
OUTCOME BASED EDUCATION BOOKLET

COMPUTER SCIENCE ENGINEERING B.Tech

For the Batch of Students admitted during Academic Year 2016-17 & 2017-18

..... Moving Towards Perfection in Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Approved by AICTE: Affiliated to JNTUH and Accredited by NAAC with 'A' Grade Dundigal, Hyderabad - 500 043

Vision

The Vision of the department is to produce competent graduates suitable for industries and organizations at global level including research and development with Social responsibility.

Mission

To provide an open environment to foster professional and personal growth with a strong theoretical and practical background having an emphasis on hardware and software development making the graduates industry ready with social ethics.

Contents Program Education Objectives and Outcomes

S.No.		Page No.
PART – I (As Per NBA Norms post June, 2015) 1 Program Educational Objectives, Outcomes and Assessment Criteria 2 B.Tech -Computer Science and Engineering Program Educational Objectives 3 B.Tech -Computer Science and Engineering Program Outcomes and Program Specific Outcomes 4 Mapping of Program Educational Objectives to Program Outcomes and Program Specific Outcomes Relation between the Program Outcomes and Program Specific Outcomes and the Program Educational Objectives 6 Program Outcomes and Program Specific Outcomes of (B.Tech) CSE Graduates 7 Procedures for Outcome Delivery and Assessment with Respect to Program Outcomes and Program Specific Outcomes and Value Addition PART – II ASSESSMENT OF COURSE LEVEL STUDENT LEARNING OUTCOME 1 Course Purpose 2 Expected Learning Outcomes 3 To Define Effective Learning Outcome Statements 4 Tips for Developing Course Level Expected Learning Outcomes Statements 5 Sample Expected Learning Outcomes Statements 6 An Overview of Assessment 7 Description of a Course Purpose 8 Procedure for Development of Expected Learning Outcomes for a Course 9 References ANNEXURES A Sample Course Description (As Per NBA Norms post June, 2015)		
1	Program Educational Objectives, Outcomes and Assessment Criteria	5
2	B.Tech -Computer Science and Engineering Program Educational Objectives	6
3		8
4		9
5		12
6		13
7		23
8	Methods of Measuring Learning Outcomes and Value Addition	33
PART	- II ASSESSMENT OF COURSE LEVEL STUDENT LEARNING OUTCO	OMES
1	Course Purpose	37
2	Expected Learning Outcomes	37
3	To Define Effective Learning Outcome Statements	38
4	Tips for Developing Course Level Expected Learning Outcomes Statements	40
5	Sample Expected Learning Outcomes Statements	40
6	An Overview of Assessment	41
7	Description of a Course Purpose	42
8	Procedure for Development of Expected Learning Outcomes for a Course	43
9	References	44
ANNE	XURES	
A	Sample Course Description (As Per NBA Norms post June, 2015)	46

As Per NBA Norms Post June, 2015 Semester: I-I,I-II, II-I, III-I, III-II, IV-I & IV-II

Part – I

PROGRAM EDUCATIONAL OBJECTIVES AND OUTCOMES

First version 22 July, 2014

Program Educational Objectives, Program Outcomes and Assessment Criteria (Approved by DAC CSE on 3/9/2014):

Computer Science and Engineering Department Advisory Council: The Computer Science and Engineering Department Advisory Council (CSEDAC) include a diverse group of experts from academic and industry, as well as alumni representation. The Advisory Board meets annually, or as needed, for a comprehensive review of the Computer Science and Engineering Department strategic planning and programs. The Advisory Council meets with administration, faculty and students and prepares a report, which is presented to principal. In each visit, the Department of Computer Science and Engineering responds to the report indicating improvements and amendments to the program.

1. PROGRAM EDUCATIONAL OBJECTIVES, OUTCOMES AND ASSESSMENT CRITERIA

Learning Outcomes, Assessment Criteria

The educational aims of a module are statements of the broad intentions of the teaching team. They indicate the objectives that the teaching team intends to cover and the learning opportunities that are necessary to be available to the student. A learning outcome is a statement that indicates the content that a learner (student) is expected to know, understand and/or be able to do at the end of a period of learning. It is advisable to express learning outcomes with the common prefix:

'On completion of (the period of learning e.g. module), the student is expected to be able to...'

Generally, learning outcomes do not specify curriculum, but more general areas of learning. It is not possible to prescribe precisely how specific a learning outcome statement should be. There is a balance to be struck between the degree of specificity in a learning outcome statement and that achieved by the assessment criteria. If there are too many learning outcomes for a module, then either they are becoming assessment criteria or they are specifying too much curricular detail. The curriculum should be described in the range statement. Too few learning outcomes are unlikely to provide sufficient information on the course. As a guide, there should be between 4 and 8 learning outcomes for a course.

The Program Educational Objectives (PEOs) of the Computer Science and Engineering department are broad statements or road maps describing career and professional objectives that intend the graduates to achieve through this program.

2. B. TECH – COMPUTER SCIENCE AND ENGINEERING PROGRAM

EDUCATIONAL OBJECTIVES

A graduate of Institute of Aeronautical Engineering in Computer Science and Engineering discipline should have a successful career in Computer Science and Engineering or a related field, and within three to five years, should attain the following:

PROGRAM EDUCATIONAL OBJECTIVES:

PEO1. Excellence in Career

Students will establish themselves as effective professionals by solving real problems through the use of computer science knowledge and with attention to team work, effective communication, critical thinking and problem solving skills.

PEO2. Professional Effectiveness and Contribution to Society

Students will develop professional skills that prepare them for immediate employment and for life-long learning in advanced areas of computer science and related fields.

PEO3. Continuing Education

Students will demonstrate their ability to adapt to a rapidly changing environment by having learned and applied new skills and new technologies.

PEO4. Exercising Leadership

Students will be provided with an educational foundation that prepares them for excellence, leadership roles along diverse career paths with encouragement to professional ethics and active participation needed for a successful career.

These objectives are quite broad by intention, as Computer Science and Engineering graduates may seek further education or work in diverse areas. To make these objectives meaningful, they may be demonstrated by performance, actions, or achievements.

- i. To prepare the students who will be able to attain a solid foundation in Computer Science and engineering fundamentals with an attitude to pursue continuing education.
 - ☐ Make the students to understand their aptitude to choose the correct path of study which leads to higher qualifications and heights in the chosen field.
 - □ Should be prepared to undergo rigorous training in their fields of working.
 - Be capable of utilizing the solid foundation obtained at institute to apply successfully in solving the real time engineering problems.
 - Students need to have creative thinking processes that are acquired through good training to find solutions to engineering problems.
- ii. To prepare the students to function professionally in an increasingly international and rapidly changing world due to the advances in technologies and concepts and to contribute to the needs of the society.
 - Adoptability and accommodative mind set to suit modern world and changing economies.

	By working hard in the chosen field and sharing the professional experience at different forums within and outside the country.
	Desirable to be a member of various professional societies (IEEE, IETE, ISTE, IE, and etc.) to keep yourself abreast with the state-of-the-art technology.
	Should continue additional education in a broad range of subjects other than engineering may be needed in order to meet professional challenges efficiently and effectively.
	Continuous interaction with educational and research institutions or industrial research labs.
	Have a sound foundation of knowledge within a chosen field and achieve good depth and experience of practice in it.
	Able to relate knowledge within chosen field to larger problems in society and able to appreciate the interaction between science, technology, and society.
	Strong grasp of quantitative reasoning and an ability to manage complexity and ambiguity.
	To conduct research, and design, develop, test and oversee the development of electronic systems for global upliftment.
	Applying scientific knowledge to solve technical problems and develop products and services that benefit the society.
	An electronic engineer shall contribute to the society by research, design and development, testing and evaluation, application by manufacturing, maintenance by service, management and other functions like sales, customer service and etc.
_	prepare the students to acquire and exercise excellent leadership qualities, at various is appropriate to their experience, to address issues in a responsive, ethical, and
	vative manner.
inno	wative manner. Gives ample opportunity to work in diverse fields to acquire leadership roles in
inno	Gives ample opportunity to work in diverse fields to acquire leadership roles in professional circles outside the workplace.
inno	Gives ample opportunity to work in diverse fields to acquire leadership roles in professional circles outside the workplace. Should keep in mind that the opportunities may change with the times.
inno	Gives ample opportunity to work in diverse fields to acquire leadership roles in professional circles outside the workplace. Should keep in mind that the opportunities may change with the times. Should be prepared for creative solo and collaborative brainstorming sessions.
inno	Gives ample opportunity to work in diverse fields to acquire leadership roles in professional circles outside the workplace. Should keep in mind that the opportunities may change with the times. Should be prepared for creative solo and collaborative brainstorming sessions. Be able to inspire the team with selfless motivation and attitude to achieve success. Ability to think laterally or at-least have a flexibility of thought and make choices based
inno	Gives ample opportunity to work in diverse fields to acquire leadership roles in professional circles outside the workplace. Should keep in mind that the opportunities may change with the times. Should be prepared for creative solo and collaborative brainstorming sessions. Be able to inspire the team with selfless motivation and attitude to achieve success. Ability to think laterally or at-least have a flexibility of thought and make choices based on the requirement for situation.
To j	Gives ample opportunity to work in diverse fields to acquire leadership roles in professional circles outside the workplace. Should keep in mind that the opportunities may change with the times. Should be prepared for creative solo and collaborative brainstorming sessions. Be able to inspire the team with selfless motivation and attitude to achieve success. Ability to think laterally or at-least have a flexibility of thought and make choices based on the requirement for situation. Prepare the students who will be able to excel, in their careers by being a part of these and growth of an organization, with which they are associated. To achieve this, the focus should not be limited to an engineering curriculum and even to
To j	Gives ample opportunity to work in diverse fields to acquire leadership roles in professional circles outside the workplace. Should keep in mind that the opportunities may change with the times. Should be prepared for creative solo and collaborative brainstorming sessions. Be able to inspire the team with selfless motivation and attitude to achieve success. Ability to think laterally or at-least have a flexibility of thought and make choices based on the requirement for situation. Prepare the students who will be able to excel, in their careers by being a part of these and growth of an organization, with which they are associated. To achieve this, the focus should not be limited to an engineering curriculum and even to the class room. Continuing professional education by attending short term in courses design to update
Toj	Gives ample opportunity to work in diverse fields to acquire leadership roles in professional circles outside the workplace. Should keep in mind that the opportunities may change with the times. Should be prepared for creative solo and collaborative brainstorming sessions. Be able to inspire the team with selfless motivation and attitude to achieve success. Ability to think laterally or at-least have a flexibility of thought and make choices based on the requirement for situation. Prepare the students who will be able to excel, in their careers by being a part of the ess and growth of an organization, with which they are associated. To achieve this, the focus should not be limited to an engineering curriculum and even to the class room. Continuing professional education by attending short term in courses design to update engineering skills.
Toj	Gives ample opportunity to work in diverse fields to acquire leadership roles in professional circles outside the workplace. Should keep in mind that the opportunities may change with the times. Should be prepared for creative solo and collaborative brainstorming sessions. Be able to inspire the team with selfless motivation and attitude to achieve success. Ability to think laterally or at-least have a flexibility of thought and make choices based on the requirement for situation. Prepare the students who will be able to excel, in their careers by being a part of these and growth of an organization, with which they are associated. To achieve this, the focus should not be limited to an engineering curriculum and even to the class room. Continuing professional education by attending short term in courses design to update engineering skills. A lifelong commitment to learning new and specialized information. Should accept first person responsibility and should take the initiative in carrying out the
Tojsucc	Gives ample opportunity to work in diverse fields to acquire leadership roles in professional circles outside the workplace. Should keep in mind that the opportunities may change with the times. Should be prepared for creative solo and collaborative brainstorming sessions. Be able to inspire the team with selfless motivation and attitude to achieve success. Ability to think laterally or at-least have a flexibility of thought and make choices based on the requirement for situation. Prepare the students who will be able to excel, in their careers by being a part of these and growth of an organization, with which they are associated. To achieve this, the focus should not be limited to an engineering curriculum and even to the class room. Continuing professional education by attending short term in courses design to update engineering skills. A lifelong commitment to learning new and specialized information. Should accept first person responsibility and should take the initiative in carrying out the work.
Toj	Gives ample opportunity to work in diverse fields to acquire leadership roles in professional circles outside the workplace. Should keep in mind that the opportunities may change with the times. Should be prepared for creative solo and collaborative brainstorming sessions. Be able to inspire the team with selfless motivation and attitude to achieve success. Ability to think laterally or at-least have a flexibility of thought and make choices based on the requirement for situation. Perepare the students who will be able to excel, in their careers by being a part of tess and growth of an organization, with which they are associated. To achieve this, the focus should not be limited to an engineering curriculum and even to the class room. Continuing professional education by attending short term in courses design to update engineering skills. A lifelong commitment to learning new and specialized information. Should accept first person responsibility and should take the initiative in carrying out the work. Should be determined for the duty and dedicated to work and have passion for that.

and as part of this review process, encourages comments from all interested parties including

iii.

iv.

current students, alumni, prospective students, faculty those who hire or admit our graduates to other programs members of related professional organizations, and colleagues from other educational institutions.

3. B. TECH - COMPUTER SCIENCE AND ENGINEERING PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

A graduate of the Computer Science and Engineering Program Outcomes will demonstrate:

PROGRAM OUTCOMES:

PO1. Engineering Knowledge

Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems

PO2. Problem Analysis

Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

PO3. Design/Development of Solutions

Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

PO4. Conduct Investigations of Complex Problems

Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions

PO5. Modern Tool Usage

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations

PO6. The Engineer and Society

Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice

PO7. Environment and Sustainability

Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development

PO8. Ethics

Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice

PO9. Individual and Team Work

Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings

PO10. Communication

Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

PO11. Project Management and Finance

Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

PO12. Life-long Learning

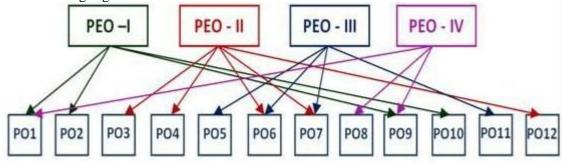
Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change

PROGRAM SPECIFIC OUTCOMES

PSO1. Professional Skills

The ability to research, understand and implement computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient analysis and design of computer-based systems of varying complexity.

PSO2. Problem-solving skills


The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product for business success.

PSO3. Successful career and Entrepreneurship

The ability to employ modern computer languages, environments, and platforms in creating Innovative career paths, to be an entrepreneur, and a zest for higher studies.

4. MAPPING OF PROGRAM EDUCATIONAL OBJECTIVES TO PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

The following Figure shows the correlation between the PEOs and the POs and PSOs

The following Table shows the correlation between the Program Educational Objectives and the Program Outcomes & Program Specific Outcomes

	Program Educational Objectives		Program Outcomes & Program Specific Outcomes
I	Students will establish themselves as effective professionals by solving real problems through the use of computer science knowledge and with attention to team work,effectivecommunication,	PO1	Engineering Knowledge Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
	critical thinking and problem solving skills.	PO2	Problem Analysis

		PSO1	Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences Professional Skills The ability to research, understand and implement computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient analysis and design of computer-based systems of varying complexity
II	Students will develop professional skills that prepare them for immediate employment and for life-long learning in advanced areas of computer science and related fields.	PO3	Design/Development of Solutions Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
		PO4	Conduct Investigations of Complex Problems Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
		PO5	Modern Tool Usage Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
		P06	The Engineer and Society Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
		PSO1	Professional Skills The ability to research, understand and implement computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient analysis and design of computer-based systems of varying
1111		PSO2	The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product for business success.
111	Students will demonstrate their ability to adapt to a rapidly changing environment by having learned and applied new skills and new technologies.	PO11	Project Management and Finance Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a

			team, to manage projects and in multidisciplinary environments
		PO12	Life-long Learning Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change
		PSO3	Successful career and Entrepreneurship The ability to employ modern computer languages, environments, and platforms in creating Innovative career paths, to be an entrepreneur, and a zest for higher studies.
IV	Students will be provided with an educational foundation that prepares them for excellence, leadership roles along diverse career paths with encouragement to professional ethics and active participation needed for a successful	PO7	Environment and Sustainability Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
	career.	PO8	Ethics Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice
		PO9	Individual and Team Work Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
		PO10	Communication Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
		PSO3	Successful career and Entrepreneurship The ability to employ modern computer languages, environments, and platforms in creating Innovative career paths, to be an entrepreneur, and a zest for higher studies.

5. RELATION BETWEEN THE PROGRAM OUTCOMES AND PROGRAM EDUCATIONAL OBJECTIVES

A broad relation between the Program Educational Objectives and the Program Outcomes is given in the following table:

PEOs ·	→ (1)	(2)	(3)	(4)
POs	Excellence	Professional	Continuing	Exercising
	in Career	Effectiveness	Education	Leadership
		And		
_				

			Contribution to Society		
PO1	Engineering Knowledge	Н		S	Н
PO2	Problem Analysis	Н		S	
PO3	Design/Development of Solutions	S	Н	S	
PO4	Conduct Investigations of Complex Problems	S	Н		
PO5	Modern Tool Usage		S	Н	
PO6	The Engineer and Society	S	Н	Н	
PO7	Environment and Sustainability	S	Н	Н	
PO8	Ethics				Н
PO9	Individual and Team work	Н			Н
PO10	Communication	Н			S
PO11	Project Management and Finance		S	Н	
PO12	Life-long Learning		Н		S

Relationship between Program Outcomes and Program Educational Objectives Key: H = Highly Related; S = Supportive

RELATION BETWEEN THE PROGRAM SPECIFIC OUTCOMES AND THE PROGRAM EDUCATIONAL OBJECTIVES

A broad relation between the program Educational Objectives and the Program Specific Outcomes are given in the following table:

PSOs	PEOs →	(1) Excellence in Career	(2) Professional Effectiveness And Contribution to Society	0	
PSO1	Professional Skills	S	Н	Н	
PSO2	Problem-solving skills	Н		S	
PSO3	Successful career and Entrepreneurship		Н		Н

Relationship between Program Specific Outcomes and Program Educational Objectives Key: H = Highly Related; S = Supportive

Note:

- The assessment process can be direct or indirect.
- The direct assessment will be through interim assessment by the faculty or by industry / technology experts.
- The indirect assessment on the other hand could be by students through course outcomes, lab evaluation, department associations, exit interviews, engineering services, GATE etc.
- Frequency of assessment can be once in a semester and justified by the program coordinator.

6. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES OF (B.Tech) CSE GRADUATES

Graduates from accredited programs must achieve the following learning outcomes, defined by broad areas of learning.

The outcomes are distributed within and among the courses within our curriculum, and our students are assessed for the achievement of these outcomes, as well as specific course learning objectives, through testing, surveys, and other faculty assessment instruments. Information obtained in these assessments is used in a short-term feedback and improvement loop.

Each Computer Science and Engineering student will demonstrate the following attributes by the time they graduate:

PO1. Engineering Knowledge

Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems

Performance Criteria Definitions

- ☐ Identify the concepts and/or equations
- ☐ Execute the solution using a logic and structured approach
- □ Evaluate the solution of the problem

PO2. Problem Analysis

Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

Performance Criteria Definitions

- □ Identify an engineering problem
- □ Formulate appropriate theoretical basis for the analysis of a given problem
- □ Analyze an engineering problem
- □ Evaluate the appropriate solution to an engineering problem

PO3. Design/Development of Solutions

Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

Performance Criteria Definitions

- ☐ Awareness of global effects of the product / practice / event
- □ Understanding of economic factors
- □ Awareness of implications to society at large

PO4. Conduct Investigations of Complex Problems

Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions

Performance Criteria Definitions

- □ Identify problem/purpose
- Prepare hypothesis
- Outline procedure
- □ List materials and equipment
- □ Conduct experiment
- □ Record observations, data and results

- Perform analysis
- □ Document conclusions

PO5. Modern Tool Usage

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations

Performance Criteria Definitions

- ☐ Use modern engineering tools for the system design, simulation and analysis
- □ Use software applications effectively to write technical reports and oral presentations
- □ Use modern equipment and instrumentation in the design process, analysis and troubleshooting

PO6. The Engineer and Society

Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice

Performance Criteria Definitions

- □ Informal meetings on current issues
- □ Participation in public service extracurricular activities
- □ Required Humanities and Social Sciences (HSS) courses on contemporary issues

PO7. Environment and Sustainability

Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development

Performance Criteria Definitions

- □ Develop a methodology to accomplish the design
- □ Select a solution from the potential solutions
- □ Implement the solution

PO8. Ethics

Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice

Performance Criteria Definitions

- ☐ Demonstrate knowledge of professional code of ethics
- □ Understanding of ethical and professional issues
- □ Acknowledge the work of other in a consistent manner
- □ Exhibit honest behavior

PO9. Individual and Team Work

Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings

Performance Criteria Definition

- □ Research and gather information
- □ Share responsibilities and duties
- □ Fulfill team role's duties
- □ listen to other teammates

PO10. Communication

Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

Performance Criteria Definitions

- ☐ Use appropriate format and grammatical structure
- □ Create a well organized document
- □ Present the results appropriately
- □ Demonstrate effective oral communication

PO11. Project Management and Finance

Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

Performance Criteria Definitions

- ☐ Awareness of global effects of the product / practice / event
- □ Understanding of economic factors
- ☐ Awareness of implications to society at large

PO12. Life-long Learning

Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change

Performance Criteria Definitions

- ☐ Find relevant sources of information
- □ Participate in school or professional seminars
- □ Participate in students or professional associations

PROGRAM SPECIFIC OUTCOMES OF (B.Tech)CSE GRADUATES

PSO1. Professional Skills

The ability to research, understand and implement computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient analysis and design of computer-based systems of varying complexity.

Performance Criteria Definitions

- □ Significantly contributing and delivery of desired engineering component, product or process
- □ Formulating and solving, moderately complex Computer Science and Engineering problems
- □ Skillful use of state-of-the-art tools for Computer Science and Engineering processes
- ☐ Making practical recommendations that address issues related to Computer Science and Engineering product and systems

PSO2. Problem-solving skills

The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product for business success.

Performance Criteria Definitions

- □ Problem or opportunity identification
- □ Problem formulation and abstraction
- □ Information and data collection.
- Model translation
- □ Experimental design and solution development.
- □ Implementation and documentation.

PSO3. Successful career and Entrepreneurship

The ability to employ modern computer languages, environments, and platforms in creating Innovative career paths, to be an entrepreneur, and a zest for higher studies

Performance Criteria Definitions

- □ Investigate and define a problem and identify constraints relating to health, safety, environmental and sustainability and assessment of risks based on these constraints.
- □ Understand customer and user needs and the importance of considerations such as aesthetics Identify and manage costs and drivers thereof.
- ☐ Use creativity to establish innovative solution Ensure fitness of purpose, for all aspects of the problem including production, operation, maintenance and disposal.
- ☐ Manage the design process and evaluate outcomes.

Courses offered in Computer Science and Engineering Curriculum (IARE-R16) –Vs- Program Outcomes and Program Specific Outcomes Attained through course modules for I-I,I-II, III-II, III-II, III-II, IV-I, IV-II Semesters

Code	Subject	PO1	PO2			PO5		PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO 3
AHS002	Linear Algebra and Ordinary Differential Equations	√	√	√	ISEN	√	LK						V			
AHS003	Computational Mathematics and Integral Calculus	√	√	√		√							√			
AHS006	Engineering Physics	V	√							√			√			
AHS005	Engineering Chemistry	V	V	V									V			
ACS001	Computer Programming	V		V	V	V					$\sqrt{}$		V	V		V
AHS104	Engineering Physics and Chemistry Laboratory	√	V	√				V					1			
ACS101	Computer Programming Laboratory	√	V	√				V			√		√	√	√	V
AME103	Computer Aided Engineering Drawing	√	1	√				V			√		1	√		
AHS102	Computational Mathematics Laboratory	√	1	√		√		√					1			V
·				I	I SEN	AEST	ER									
AHS001	English for Communication		√						\checkmark	\checkmark	\checkmark		√			
AHS004	Complex Analysis and Probability Distributions	1	√	√	√	√							√			
AHS009	Environmental Studies	V		V				√					V			
ACS002	Data Structures	V	√	√	V	√					\checkmark		V	$\sqrt{}$	√	√
AEE002	Electrical Circuits	√	$\sqrt{}$	V										√		
AHS101	Communication Skills	√	√			√					$\sqrt{}$	V	√	$\sqrt{}$	√	

Code	Subject	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO 3
	Laboratory															
	Data Structures Laboratory	V	√	√										V	√	√
	Electrical Circuits Laboratory	V	√	√	√	√									√	
	Engineering Practice Laboratory		√								1		V	V	√	
					II SE	MEST	ER							1		
	Design and Analysis of Algorithms	V		$\sqrt{}$	√								V	$\sqrt{}$	√	√
AEC020	Digital Logic Design			$\sqrt{}$	$\sqrt{}$	√	\checkmark				$\sqrt{}$			\checkmark	√	√
	Discrete Mathematical Structures	√	√	√	√									V		√
	Object Oriented Programming through JAVA	√	√	√	√	√								V	√	√
	Computer Organization and Architecture	√	√	√	√									V		
	Audit Courses															
	Design and Analysis of Algorithms Laboratory		√	√									√	1		
	Object Oriented Programming through JAVA Laboratory	√	√	√	√	√							√	√	√	
	Digital Logic Design Laboratory	√	√			√						V	√	V	√	
				I	V SE	MEST	ER							ı	1	
	Database Management Systems	V	V			√				$\sqrt{}$	V		V	V		√
ACS006	Web Technologies		√	V		V								\checkmark	V	
AIT002	Theory of Computation		√		V	√								\checkmark	√	
AIT003	Computer Networks		√	V	V									√	V	
ACS007	Operating Systems	V	√			V		V		V	V		√	V		V
	Audit Course															
	Database Management Systems Laboratory	√	√	√	√	√	√							V	√	√
	Web Technologies Laboratory	√	√	√	V	√							√	V	√	
	Operating Systems Laboratory	√	√		√									V		
_			ı		V SEN	IEST	ER		I					L	1	
ACS008	Software Engineering	√	√	√							√			√	V	√
AEC021	Microprocessors and	$\sqrt{}$	√											$\sqrt{}$	$\sqrt{}$	

Code	Subject	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO 3
	Interfacing															
AIT004	Compiler Design	√		√	√									\checkmark	√	
AHS012	Optimization Techniques	√	V								√			√		
AHS015	Business Economics and Financial Analysis	√	V	√			√			√		√				√
	Professional Elective – I															
ACS107	Software Engineering Laboratory		√	√		\checkmark				√			√	$\sqrt{}$	√	
AEC115	Microprocessors and Interfacing Laboratory	√	V		√	√								$\sqrt{}$	√	
AHS106	Research and Content Development	√		√	√	√				√		√	√	$\sqrt{}$		√
					I SE	MEST	ER					ı				
ACS015	Object Oriented Analysis and Design Patterns	√	1	1										$\sqrt{}$	√	$\sqrt{}$
ACS010	Linux Programming	√	V	√	V	V							√	√	V	1
AIT006	Data Warehousing and Data Mining	√	V	√	√	√	ı							√		√
	Professional Elective - II															
	Open Elective – I															
ACS108	Object Oriented Analysis Design Laboratory	√	√			√				√	V		1	1		√
ACS109	Linux Programming Laboratory	√	√	√	√	√							√	√	√	√
AIT102	Data Warehousing and Data Mining Laboratory	√	1			√							V	1	√	
ACS201	Ideation and Product Development		√	√		√				√		√	√	√	√	√
AEC201	Mini Project	$\sqrt{}$		$\sqrt{}$		$\sqrt{}$					√			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
	1	,	,	V	II SE		FER	,		,	,		,		,	,
ACS011	Cloud Application Development	√	√			√		√		V	√ 		√	V	V	V
AIT008	Software Testing Methodology	√	√			V				√	√		√	√	√	√
ACS012	Big Data and Business Analytics	√	√	V	√	V					√			$\sqrt{}$	V	V
	Professional Elective - III															
	Open Elective – II															

Code	Subject	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2	PSC 3
ACS110	Cloud Application Development Laboratory	V	1			√					√			1		√
AIT104	Software Testing Methodology Laboratory	V	1	√		√						√	V	1	√	
ACS111	Big Data and Business Analytics Laboratory	V	V		√	√					$\sqrt{}$		√	√		√
ACS301	Project Work (Phase-I)	√	√	√	√	√					$\sqrt{}$	√	√	√	√	√
			T	V]	III SE	MES'	TER	I								
ACS013	Information Security										$\sqrt{}$			$\sqrt{}$		
ACS014	Machine Learning	√	√	√						√			√			
	Professional Elective – IV															
ACS401	Comprehensive Examination	√	V	√		√				√			√	√		
ACS302	Project Work (Phase-II)	√	√	√	√	√					√	√	√	√	√	√
				OFES						0.077						
			P - I: S	SEMIO				ECH	NOL		1 1	1	1	1	1	1
ACS501	C# and .NET framework	V	٧	٧	√	√	√			√	$\sqrt{}$	√	√	V	٧	V
ACS502	Advanced Java Programming	V								$\sqrt{}$	\checkmark		√	\checkmark		
ACS503	Advanced Computer Architecture	√	V							$\sqrt{}$	\checkmark		√	√		
AIT501	Advanced Operating System	√	V		V	√					1			√		
AIT502	Parallel Programming Using CUDA	V	V	√	√	√		√					√	√	√	1
ACS504	Multi-core Architectures	V	V	√	V					√	V			V	V	
	GROUP	- II:	SIGN	AL, I	MAG	E AN	D SPI	EECH	PRO	CESS	SING				ı	
ACS505	Database Security	\checkmark	\checkmark							$\sqrt{}$	$\sqrt{}$		\checkmark			
ACS506	Cyber Security	V	$\sqrt{}$			V					√		√	V		
ACS507	Network Programming and Management	√	V			√				√	V		√	1		√
ACS508	Software Defined Networks	V	V	√	√	√				√	V		√	√	√	
ACS509	High Speed Networks	V	V	√		V				V	√		√	√	√	√
ACS510	Internet of Things (IoT)	V	√	√					l					√	√	
	GROUP - III: MI	CRO	ELE (CTRO	NICS	AND	INT	EGR/	ATED	CIRC	CUIT I	DESIG	N		1	
ACS511	Image Processing				I		Ì	Ì	1					\checkmark		

Code	Subject	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO 3
AIT503	Pattern Recognition	V	V	V	V	V							√	$\sqrt{}$	V	√
AIT504	User Interface Design	√	V		V	√				√			√	$\sqrt{}$	√	
AIT505	Advanced Databases	√	V	√	√	√			i.	√			V	V	V	√
AIT506	Parallel Computing	√	√	√	V	V				V	V		√	√	V	
AIT507	Distributed Databases					$\sqrt{}$				$\sqrt{}$	$\sqrt{}$		\checkmark	\checkmark		\checkmark
	GRO	UP - 1	IV: W	IREI	ESS		TELE	COM	IMUN	NICAT	TIONS				1	
AIT508	Software Development Methodology	√	V			$\sqrt{}$				√	$\sqrt{}$		V	√ 		√
AIT509	Software Quality Management	√	√			√				√	1		√	V		√
AIT510	Software Architecture and Design Patterns	√	√	√	√	\checkmark			√	√	V	√		V	√	√
AIT511	Software Engineering and Estimation	√	√			√				√	V		V	V		√
AIT512	Software Process and Project Management	√	V			√				✓	✓		V	V		√
AIT513	Component Based Software Engineering	V	V	√	√	√					1			V	√	√
		GF	ROUP	- V: I	NETV	VORK	ING	AND	COD	ING			l.	L	ı	
ACS512	Artificial Intelligence			√	√	√					$\sqrt{}$		$\sqrt{}$		V	$\sqrt{}$
ACS513	Soft Computing					√				√	$\sqrt{}$		\checkmark	$\sqrt{}$		$\sqrt{}$
ACS514	Elements of Neural Computation	√	√	√	V	√				√	1		√	√	V	
ACS515	Computational Intelligence	√	√			√				√	1		V	V		√
ACS516	Intelligent System Design	√	√	√	√	√					1		V	V		√
ACS517	Natural Language Processing	√	√			√				√	1		√	V		√
	GR			EMB			STE	MS A	ND R	OBO				L .	I	,
ACS518	Cloud Infrastructure and Services	√	√	√	√	√					V		V	$\sqrt{}$		√
ACS519	Wireless and Mobile Computing	√	√			√				√	$\sqrt{}$		√	V		√
ACS520	High Performance Computing	√	√	√	√	\checkmark					✓		V	V		√
AIT514	E-commerce	√	√	V	V	V				V	V		√	√	V	
AIT515	Web Services	√	V			V				V	$\sqrt{}$		√	$\sqrt{}$	V	√
AIT516	Green Computing	√	√			√				√	V		√	√		√
				OPI	EN EL		IVE-I									
AME551	Elements of Mechanical Engineering	V	1			$\sqrt{}$				√	√		1	√	1	√

Code	Subject	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO 3
ACE551	Disaster Management	V	√	√										$\sqrt{}$	V	V
ACE552	Geospatial Techniques															
ACS551	Principles of Operating System*															
ACS552	JAVA Programming *															
AEC551	Embedded System Design															
AME552	Introduction to Automobile Engineering															
AME553	Introduction to Robotics															
AAE551	Aerospace Propulsion and Combustion	√	√	√	√	√					√			√	√	$\sqrt{}$
				OPI	EN EI	ECT	IVE-I	I	_							•
AEC552	Fundamentals of Image Processing	V	V			V				V	√		V	$\sqrt{}$		√
ACS553	Fundamentals of Database Management Systems*															
AIT551	Basics of Information Security and Cryptography*															
AHS551	Modeling and Simulation															
AHS552	Research Methodologies															
AEE551	Energy from Waste															
AAE552	Finite Element Analysis															
AME554	Basic Refrigeration and Air-Conditioning															
AAE553	Launch Vehicles and Controls															
		ı	T	AU	DIT	COU	RSES	ı	T			1		1	ı	
AHS601	Intellectual Property Rights	√				√	√	√								
AHS602	Total Quality Management															
AHS603	Professional Ethics and Human Values	l.					l	l.			li .					
AHS604	Legal Sciences															
AHS605	Clinical Psychology															
AHS606	English for Special Purposes															

Code	Subject	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO 3
AHS607	Entrepreneurship															
AHS608	Any Foreign Language															
AHS609	Design History															
AHS017	Gender Sensitivity															

7. PROCEDURES FOR OUTCOME DELIVERY AND ASSESSMENT WITH RESPECT TO PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

The categorization of outcomes of the above Computer science and Engineering courses is grouped as follows:

The Courses covered by Individual Program Outcomes and Program Specific Outcomes

PO1: Engin	eering Knowledge		
Apply the l	knowledge of mathematics, science, engineeri	ng fundamer	ntals, and an engineering specialization to the
solution of	complex engineering problems		
AHS002	Linear Algebra and Ordinary Differential Equations	AHS013	Discrete Mathematical Structures
AHS003	Computational Mathematics and Integral Calculus	ACS003	Object Oriented Programming through JAVA
AHS006	Engineering Physics	ACS004	Computer Organization and Architecture
AHS005	Engineering Chemistry	ACS103	Object Oriented Programming through JAVA Laboratory
ACS001	Computer Programming	AEC116	Digital Logic Design Laboratory
AHS104	Engineering Physics and Chemistry Laboratory	ACS106	Operating Systems Laboratory
AEE102	Electrical Circuits Laboratory		
ACS101	Computer Programming Laboratory	ACS006	Web Technologies
AME103	Computer Aided Engineering Drawing	AIT002	Theory of Computation
AHS102	Computational Mathematics Laboratory	ACS301	Project Work (Phase- I)
ACS302	Project Work (Phase- II)	ACS401	Comprehensive Examination
AHS004	Complex Analysis and Probability Distributions	ACS104	Database Management Systems Laboratory
AHS009	Environmental Studies	ACS105	Web Technologies Laboratory
ACS002	Data Structures	AEC010	Computer Organization
AEE002	Electrical Circuits	ACS106	Operating Systems Laboratory
AHS101	Communication Skills Laboratory	AHS015	Business Economics and Financial Analysis
ACS102	Data Structures Laboratory	ACS008	Software Engineering
AEE102	Electrical Circuits Laboratory	ACS5	Image Processing
AEC001	Electronic Devices and Circuits	AHS106	Research and Content Development Laboratory
AHS011	Mathematical Transform Techniques	AEC021	Microprocessors and Interfacing
AIT001	Design and Analysis of Algorithms	AIT004	Compiler Design
AEC020	Digital Logic Design	AHS012	Optimization Techniques
AEC115	Microprocessors and Interfacing Laboratory	ACS015	Object Oriented Analysis and Design Patterns
AEC101	Electronic Devices and Circuits Laboratory	AIT003	Computer Networks
AIT006	Data Warehousing and Data Mining	AEC018	Image Processing

ACS510	Internet of Things (IoT)	AHS017	Gender Sensitivity
ACES	Disaster Management	ACS013	Information Security
551			
AEC116	Digital Logic Design Laboratory	AEC021	Microprocessors and Interfacing
AEC201	Mini Project		
	em Analysis		
	ormulate, review research literature, and anal		
	s using first principles of mathematics, natura		
AHS002	Linear Algebra and Ordinary	AIT001	Design and Analysis of Algorithms
	Differential Equations		
AHS003	Computational Mathematics and Integral	AEC020	Digital Logic Design
1770005	Calculus		
AHS006	Engineering Physics	ACS004	Computer Organization and Architecture
AHS005	Engineering Chemistry	AHS013	Discrete Mathematical Structures
ACS001	Computer Programming	AHS015	Business Economics and Financial Analysis
AHS104	Engineering Physics and Chemistry	ACS003	Object Oriented Programming through
	Laboratory		JAVA
AEE102	Electrical Circuits Laboratory		
ACS101	Computer Programming Laboratory	ACS006	Web Technologies
ACS103	Object Oriented Programming through	ACS107	Software Engineering Laboratory
	JAVA Laboratory		
AIT101	Design and Analysis of Algorithms	Ace5	Disaster Management
	Laboratory	51	
AHS001	English for Communication	ACS008	Software Engineering
AHS009	Environmental Studies	AIT004	Compiler Design
ACS002	Data Structures	AHS012	Optimization Techniques
AEE002	Electrical Circuits	AEC201	Mini Project
AHS101	Communication Skills Laboratory	ACS015	Object Oriented Analysis and Design
			Patterns
ACS102	Data Structures Laboratory	AIT006	Data Warehousing and Data Mining
AIT002	Theory of Computation	ACS510	Internet of Things (IoT)
ACS112	Engineering Practice Laboratory	ACS201	Ideation and Product Development
AEC001	Electronic Devices and Circuits	ACS104	Database Management Systems Laboratory
AHS011	Mathematical Transform Techniques	ACS105	Web Technologies Laboratory
AEC002	Digital System Design	ACS106	Operating Systems Laboratory
AIT003	Computer Networks	AEC101	Electronic Devices and Circuits
			Laboratory
ACS106	Operating Systems Laboratory	ACS01	Information Security
		3	
ACS014	Machine Learning	ACS30	Project Work (Phase- I)
ACS401	Comprehensive Examination	ACS30	Project Work (Phase- II)
ļ		2	
AEC201	Mini Project		
ACS511	Image Processing		

PO3: Design/Development of Solutions

Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

AHS002	Linear Algebra and Ordinary Differential Equations	ACS106	Operating Systems Laboratory
--------	---	--------	------------------------------

AHS003	Computational Mathematics and Integral	ACS104	Database Management Systems Laboratory
	Calculus		
AHS005	Engineering Chemistry	AHS106	Research and Content Development
			Laboratory
ACS001	Computer Programming	ACS511	Image Processing
AHS104	Engineering Physics and Chemistry Laboratory	AIT003	Computer Networks
ACS101	Computer Programming Laboratory	ACS105	Web Technologies Laboratory
AHS013	Discrete Mathematical Structures	ACS008	Software Engineering
ACS003	Object Oriented Programming through	AIT004	Compiler Design
	JAVA		
AHS009	Environmental Studies	ACS107	Software Engineering Laboratory
ACS002	Data Structures	ACS015	Object Oriented Analysis and Design
			Patterns
AEE102	Electrical Circuits Laboratory	AIT006	Data Warehousing and Data Mining
ACS102	Data Structures Laboratory	ACS510	Internet of Things (IoT)
AIT001	Design and Analysis of Algorithms	ACE	Disaster Management
		551	
AEC020	Digital Logic Design	ACS201	Ideation and Product Development
ACS004	Computer Organization and Architecture	AHS015	Business Economics and Financial Analysis
ACS103	Object Oriented Programming through	ACS006	Web Technologies
	JAVA Laboratory		
AIT101	Design and Analysis of Algorithms	ACS014	Machine Learning
	Laboratory		
ACS401	Comprehensive Examination	ACS302	Project Work (Phase- II)
AEC201	Mini Project		
ACS301	Project Work (Phase- I)		

PO4: Conduct Investigations of Complex Problems

Use research-based knowledge and research methods including design of experiments, analysis and interpretation of

data, and synthesis of the information to provide valid conclusions								
ACS001	Computer Programming	ACS103	Object Oriented Programming through					
			JAVA Laboratory					
AIT001	Design and Analysis of Algorithms	AIT002	Theory of Computation					
ACS002	Data Structures	ACS104	Database Management Systems Laboratory					
AHS013	Discrete Mathematical Structures	ACS106	Operating Systems Laboratory					
AEC001	Electronic Devices and Circuits	AIT004	Compiler Design					
AEE102	Electrical Circuits Laboratory							
AHS011	Mathematical Transform Techniques	AEC115	Microprocessors and Interfacing Laboratory					
AEC003	Probability Theory and Stochastic Processes	AIT006	Data Warehousing and Data Mining					
AEE017	Electrical Technology	ACS105	Web Technologies Laboratory					
AHS106	Research and Content Development	ACS003	Object Oriented Programming through					
	Laboratory		JAVA					
AEC013	Microprocessors and Microcontrollers	ACS004	Computer Organization and Architecture					
AEC020	Digital Logic Design	ACS013	Information Security					
ACS301	Project Work (Phase- I)	ACS302	Project Work (Phase- II)					

PO5: Modern Tool Usage

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations

prediction a	prediction and moderning to complex engineering activities with an understanding of the minitations									
AHS002	Linear Algebra and Ordinary	AHS106	Research and Content Development							
	Differential Equations		Laboratory							
AHS003	Computational Mathematics and Integral Calculus	AIT003	Computer Networks							

ACS001	Computer Programming	ACS107	Software Engineering Laboratory				
ACS003	Object Oriented Programming through	AIT002	Theory of Computation				
	JAVA						
ACS103	Object Oriented Programming through	AIT006	Data Warehousing and Data Mining				
	JAVA Laboratory						
ACS002	Data Structures	ACS201	Ideation and Product Development				
AHS101	Communication Skills Laboratory	ACS106	Operating Systems Laboratory				
AEC010	Computer Organization	ACS006	Web Technologies				
AEE102	Electrical Circuits Laboratory						
AEC001	Electronic Devices and Circuits	ACS104	Database Management Systems Laboratory				
AHS011	Mathematical Transform Techniques	ACS511	Image Processing				
AEC002	Digital System Design	ACS013	Information Security				
AEC003	Probability Theory and Stochastic	AEC115	Microprocessors and Interfacing Laboratory				
	Processes						
AEC101	Electronic Devices and Circuits	ACS014	Machine Learning				
	Laboratory						
AEC020	Digital Logic Design	ACS301	Project Work (Phase- I)				
ACS401	Comprehensive Examination	AEC201	Mini Project				
AHS017	Gender Sensitivity	ACS302	Project Work (Phase- II)				
	Engineer and Society						
Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and							
the consequent responsibilities relevant to the professional engineering practice							
AFC103	Digital System Design Laboratory	AEC020	Digital Logic Docion				

			E
AEC103	Digital System Design Laboratory	AEC020	Digital Logic Design
ACS104	Database Management Systems Laboratory	AHS017	Gender Sensitivity
AHS015	Business Economics and Financial Analysis		

PO7: Environment and Sustainability

Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development

0.0111011011		<u> </u>	
AHS005	Engineering Chemistry	AHS017	Gender Sensitivity
AHS104	Engineering Physics and Chemistry	AHS009	Environmental Studies
ACS101	Computer Programming Laboratory		

PO8: Ethics

Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice

AHS001 English for Communication

PO9: Indiv	PO9: Individual and Team Work						
Function ef	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings						
AHS006	006 Engineering Physics AEC010 Computer Organization						
AHS001	English for Communication	AHS015	Business Economics and Financial Analysis				
AHS015	Business Economics and Financial Analysis	AHS106	Research and Content Development				
		Alisioo	Laboratory				
ACS107	Software Engineering Laboratory	ACS01	Machine Learning				
		4					
ACS201	Ideation and Product Development	ACS40	Comprehensive Examination				
	•	1	_				

PO10: Communication

Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

ACS001	Computer Programming	ACS112 Engineering Practice Laboratory	
ACS101	Computer Programming Laboratory	rogramming Laboratory AHS011 Mathematical Transform Tec	
AME103	Computer Aided Engineering Drawing	AEC020 Digital Logic Design	
AHS001	English for Communication	ACS008 Software Engineering	
ACS002	Data Structures	AHS012 Optimization Techniques	

AHS101	Communication Skills Laboratory	ACS013 Information Security	
AEC010	Computer Organization	ACS014	Machine Learning
AIT003	Computer Networks	ACS301	Project Work (Phase- I)
AEC201	Mini Project	ACS401	Project Work (Phase- II)

PO11: Project Management and Finance

Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

OWII WOLK,	own work, as a member and leader in a team, to manage projects and in mutual sciplinary environments					
AHS101	Communication Skills Laboratory	AEC201 Mini Project				
AEC101	Electronic Devices and Circuits Laboratory	ACS201	Ideation and Product Development			
AEC116	Digital Logic Design Laboratory	ACS511	Image Processing			
AHS015	Business Economics and Financial Analysis	AHS106	Research and Content Development Laboratory			
ACS301	Project Work (Phase- I)	AEC201	Mini Project			
ACS401	Project Work (Phase- II)					

PO12: Life-long Learning

Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

bi bauest co	intext of technological change		
AHS002	Linear Algebra and Ordinary Differential Equations	AIT101	Design and Analysis of Algorithms Laboratory
AHS003	Computational Mathematics and Integral Calculus	ACS511	Image Processing
AHS006	Engineering Physics	AIT003	Computer Networks
AHS005	Engineering Chemistry	ACS103	Object Oriented Programming through JAVA Laboratory
ACS001	Computer Programming	AEC116	Digital Logic Design Laboratory
AEE102	Electrical Circuits Laboratory		
AHS104	Engineering Physics and Chemistry Laboratory	AEC302	Project Work (Phase- II)
ACS101	Computer Programming Laboratory	AHS009	Environmental Studies
AIT001	Design and Analysis of Algorithms	ACS201	Ideation and Product Development
AEC020	Digital Logic Design	ACS002	Data Structures
AHS001	English for Communication	AHS101	Communication Skills Laboratory
ACS105	Web Technologies Laboratory	ACS112	Engineering Practice Laboratory
AEC001	Electronic Devices and Circuits	ACS013	Information Security
ACS107	Software Engineering Laboratory	ACS014	Machine Learning
ACS301	Project Work (Phase- I)	ACS401	Comprehensive Examination
AEC201	Mini Project		

PSO1: Professional Skills

The ability to research, understand and implement computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient analysis and design of computer-based systems of varying complexity.

ACS001	Computer Programming	AIT003	Computer Networks
ACS101	Communication Decommendation I also not a management	ACS003	Object Oriented Programming through
ACSIOI	Computer Programming Laboratory		JAVA
AME103	Computer Aided Engineering Drawing	AEC401	Comprehensive Examination
ACS002	Data Structures	AEC302	Project Work (Phase- II)
AHS013	Discrete Mathematical Structures		Computer Organization and Architecture
AHS101	Communication Skills Laboratory	AEC116 Digital Logic Design Laboratory	
ACS102	Data Structures Laboratory	ACS006 Web Technologies	
ACS112	Engineering Practice Laboratory	AIT002	Theory of Computation

AEC001	Electronic Devices and Circuits	AIT003	Computer Networks		
AHS011	Mathematical Transform Techniques	ACS106	Operating Systems Laboratory		
AIT001	Design and Analysis of Algorithms	ACS105	Web Technologies Laboratory		
AEC020	Digital Logic Design	ACS106	Operating Systems Laboratory		
ACS103	Object Oriented Programming through	ACS511	Image Processing		
	JAVA Laboratory				
AEC101	Electronic Devices and Circuits Laboratory	ACS107	Software Engineering Laboratory		
AIT101	Design and Analysis of Algorithms	AEC115	Microprocessors and Interfacing Laboratory		
	Laboratory				
ACS104	Database Management Systems Laboratory	ACS201	Ideation and Product Development		
ACS008	Software Engineering	AEC010	Computer Organization		
AEC021	Microprocessors and Interfacing	AHS106	Research and Content Development		
		Alisioo	Laboratory		
AIT004	Compiler Design	AHS012	Optimization Techniques		
AIT006	Data Warehousing and Data Mining	ACS015	Object Oriented Analysis and Design		
			Patterns		
ACS510	Internet of Things (IoT)	ACS013	Information Security		
ACS014	Machine Learning	ACS301	Project Work (Phase- I)		
AEC201	Mini Project				
ACS401	Comprehensive Examination	ACS302	Project Work (Phase- II)		

PSO2: Problem-solving skills

The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product for business success.

ACS101	Computer Programming Laboratory	AIT001	Design and Analysis of Algorithms
ACS002	Data Structures	AEC020	Digital Logic Design
AHS101	Communication Skills Laboratory	ACS103	Object Oriented Programming through
Alisiui	Communication Skins Laboratory		JAVA Laboratory
ACS102	Data Structures Laboratory	AEC301	Project Work (Phase- I)
AHS013	Discrete Mathematical Structures	AIT003	Computer Networks
ACS003	Object Oriented Programming through JAVA	AEC401	Project Work (Phase- II)
AEC001	Electronic Devices and Circuits	AIT002	Theory of Computation
AHS011	Mathematical Transform Techniques	ACS107	Software Engineering Laboratory
AEC003	Probability Theory and Stochastic Processes	AEC115	Microprocessors and Interfacing Laboratory
AEC101	Electronic Devices and Circuits Laboratory	ACS201	Ideation and Product Development
AEC116	Digital Logic Design Laboratory	AEC021	Microprocessors and Interfacing
ACS006	Web Technologies	AIT004	Compiler Design
AIT003	Computer Networks	ACS015	Object Oriented Analysis and Design
			Patterns
ACS104	Database Management Systems Laboratory	AEC108	Microprocessors and Microcontrollers
		ALCIO	Laboratory
ACS105	Web Technologies Laboratory	ACS510	Internet of Things (IoT)
ACS511	Image Processing	ACS01	Information Security
		3	
AEC201	Mini Project		
ACS008	Software Engineering	AEE102	Electrical Circuits Laboratory
DOOG O			

PSO3: Successful career and Entrepreneurship

The ability to employ modern computer languages, environments, and platforms in creating Innovative career paths, to be an entrepreneur, and a zest for higher studies.

		ACE5	Disaster Management
ACS001	Computer Programming	51	
ACS101	Computer Programming Laboratory	ACS201	Ideation and Product Development

AHS102	Computational Mathematics Laboratory	ACS104	Database Management Systems Laboratory	
ACS002	Data Structures	ACS511	Image Processing	
ACS102	Data Structures Laboratory	ACS008	Software Engineering	
		ACS015	Object Oriented Analysis and Design	
AEC001	Electronic Devices and Circuits		Patterns	
AHS011	Mathematical Transform Techniques	AEC010	Computer Organization	
AEC020	Digital Logic Design	AIT006	Data Warehousing and Data Mining	
AHS013	Discrete Mathematical Structures	AHS015	Business Economics and Financial Analysis	
ACS003	Object Oriented Programming through		Research and Content Development	
	JAVA	AHS106	Laboratory	
AIT001	Design and Analysis of Algorithms	ACS014	Machine Learning	
ACS301	Project Work (Phase- I)	AEC201	Mini Project	
ACS401	Project Work (Phase- II)			

8. METHODS OF MEASURING LEARNING OUTCOMES AND VALUE ADDITION

There are many different ways to assess student learning. In this section, we present the different types of assessment approaches available and the different frameworks to interpret the results.

- i. Mid Semester Course Evaluation
- ii. End-of Semester Course Evaluation
- iii. Continuous Evaluation of Classroom Performance
- iv. Course Objective Surveys
- v. Course Instructor's Evaluations
- vi. Graduating Senior's survey
- vii. Alumni Survey
- viii. Employer Survey
- ix. Laboratory and Project Works
- x. Balanced Composition in Curriculum
- xi. Department Academic Committee and Faculty Meetings
- xii. Professional Societies

The above assessment indicators are detailed below.

i. Mid Semester Course Evaluation

Mid semester course reviews are conducted for all courses by the department. All students are encouraged to actively participate in this evaluation process. These evaluations are critically reviewed by HOD and senior faculty and the essence is communicated to the faculty concerned to analyze, improve and practice so as to improve the performance of the student.

ii. End-of Semester Course Evaluation

The end-of semester course reviews are conducted, feedback taken from students and remedial measures will be taken up such that the student gets benefited before going for the university end exams. The positive and negative comments made by the students about the course are recorded and submitted to the departmental academic council (DAC) and to the Principal for taking necessary actions to better the course for subsequent semesters.

iii. Continuous Evaluation of Classroom Performance

Students are encouraged and motivated to participate actively in the classroom proceedings by way of interactive teaching by the instructor. Surprise class tests comprising of short answer questions, quiz based discussions, multiple-choice, true-false, and matching tests are conducted to strengthen the teaching-learning process. Apart from teacher control and covering content, the teacher also acts as a felicitator and students discover things for themselves, enabling them to be more independent and becoming life-long learners exploring student-centric educational philosophy.

iv. Course Objective Surveys

Students are encouraged to fill-out a brief survey on the fulfillment of course objectives.

The data is reviewed by the concerned course faculty and the results are kept open for the entire faculty. Based on this, alterations or changes to the course objectives are undertaken by thorough discussions in faculty and DAC meetings.

v. Course Instructor's Evaluations

The course coordinator will collect the course portfolios from the respective instructors of each course offered in a given semester at the beginning of the semester as well as at the end of the semester. They remain on file for verification and study by the entire faculty. This helps the course coordinator and faculty to understand how effectively we can teach the given course. Betterment can be achieved from time to time and continuous improvement can be shown in handling courses in the subsequent semesters.

vi. Graduating Senior's Survey

The graduating seniors survey form is to be filled by all the students leaving the institution. The questionnaire is designed in such a way to gather information from the students regarding the program educational objectives, solicit about program experiences, carrier choices, as well as any suggestions and comments for the improvement of the program. The opinions expressed in exit interview forms are reviewed by the DAC for implementation purposes.

vii. Alumni Survey

The survey asks former students of the department about the status of their employment and further education, perceptions of institutional emphasis, estimated gains in knowledge and skills, involvement as undergraduate students, and continuing involvement with Institute of Aeronautical Engineering. This survey is administered every three years. The data obtained will be analyzed and used in continuous improvement.

viii. Employer Survey

The main purpose of this employer questionnaire is to know employer's views about the skills they require of employees compared to the skills actually possessed by them. The purpose is also to identify gaps in technical and vocational skills, need for required training practices to fill these gaps and criteria for hiring new employees. These employer surveys are reviewed by the College Academic Council (CAC) to affect the present curriculum to suit the requirements of the employer.

ix. Laboratory and Project Works

The laboratory work is continuously monitored and assessed to suit the present demands of the industry. Students are advised and guided to do project works giving solutions to research/industrial problems to the extent possible by the capabilities and limitations of the student. The results of the assessment of the individual projects and laboratory work can easily be conflated in order to provide the students with periodic reviews of their overall progress and to produce terminal marks and grading.

x. Balanced Composition in Curriculum

The undergraduate program in Computer Science and Engineering is designed to prepare students for successful careers in engineering and related fields by providing a balanced education, that prepares students to apply analytical, computational, experimental, and methodological tools to solve engineering problems; a strong foundation in mathematics and physical sciences; a broad and balanced general education in the humanities, arts, social sciences, and interdisciplinary studies; sufficient training and development of skills for effective communication and teamwork; a proper understanding of an engineer's professional and ethical responsibilities in relation to engineering fields and society; and recognition of the need for lifelong learning. The student's intellectual and ethical development is assessed continuously in relation to the balanced composition in curriculum.

xi. Department Academic Committee and Faculty Meetings

The DAC meets bi-annually for every academic year to review the strategic planning and modification of PEOs. Faculty meetings are conducted at least once in fort night for ensuring the implementation of DAC's suggestions and guidelines. All these proceeding are recorded and kept for the availability of all faculties.

xii. Professional Societies

The importance of professional societies like IEEE, IETE, ISTE etc., are explained to the students and they are encouraged to become members of the above to carry out their continuous search for knowledge. Student and faculty chapters of the above societies are constituted for a better technical and entrepreneurial environment. These professional societies promote excellence in instruction, research, public service and practice.

Part - II

METHODOLOGY FOR PREPARATION AND ASSESSMENT OF COURSE LEVEL STUDENT LEARNING OUTCOMES

Although the term "Expected Learning Outcome" may be new, the process of identifying the key concepts or skills that students are expected to learn during specific courses is not. Many people are more familiar with the terms "course objective" or "course competency". Expected learning outcomes are really very similar to both of these concepts, so if you already have course objectives or competencies, you are close to having expected learning outcomes for class.

This will provide information on exactly what expected learning outcomes are and what methods can be used to assess them. This is designed to assist faculty with the process of developing expected learning outcomes and methods for assessing those outcomes in their courses. This provides basic information related to (1) course purpose; (2) expected learning outcomes; (3) methods for assessing expected learning outcomes; (4) criteria for grade determination; and (5) course outline.

Expected Learning Outcomes:

After reading and completing this, individuals will be able to:

- Prepare a description of the course as well as a written statement regarding the course's purpose;
- Construct/develop expected learning outcomes for the course;
- Create an assessment plan that outlines the specific methods that will be used to assess the expected student learning outcomes for a course;
- Describe how grades will be determined in a process that is separate and distinct from assessing the expected learning outcomes;
- Identify the common components of a course outline
- Revise their course syllabi to incorporate a course purpose, expected learning outcomes, methods to assess those outcomes, the criteria for grade determination, and a course outline.
- This process uses some terminology related to expected learning outcomes and assessment. A brief glossary of terms has been provided below for reference purposes.

Assessment of expected learning outcomes:

The process of investigating (1) what students are learning and (2) how well they are learning it in relation to the stated expected learning outcomes for the course.

Assessment plan:

The proposed methods and timeline for assessment-related activities in a given course (e.g., when are you going to check what/how well the students are learning and how are you going to do that?).

Classroom Assessment Technique (CAT):

Angelo and Cross (1993) developed a variety of techniques/activities than can be used to assess students' learning. These CATs are often done anonymously and are not graded. These activities check on the class' learning while students are still engaged in the learning process. An example of a CAT is a non-graded quiz given a few weeks before the first exam.

Course description:

A formal description of the material to be covered in the course.

Course purpose:

The course purpose describes the intent of the course and how it contributes to the programme. The course purpose goes beyond the course description.

Expected learning outcome:

A formal statement of what students are expected to learn in a course (synonyms for "expected learning outcome" include learning outcome, learning outcome statement, and student learning outcome).

Evaluation:

Making a judgment about the quality of student's learning/work and assigning marks based on that judgment. Evaluation activities (such as exams, papers, etc.) are often seen as formal ways to assess the expected learning outcomes for a course.

Methods for assessing student learning outcomes:

This term refers to any technique or activity that is used to identify what students are learning or how well they are learning. Formal methods for evaluating student learning outcomes include Continuous Assessment Tests, Mid Semester Test, Tutorials, End Semester Examination etc. The assessment methods are used to identify how the well students have acquired the learning outcomes for the course.

1. COURSE PURPOSE

One of the first steps in identifying the expected learning outcomes for a course is identifying the purpose of teaching in the course. By clarifying the purpose of the course, faculty can help discover the main topics or themes related to students' learning. These themes help to outline the expected learning outcomes for the course.

The course purpose involves the following:

- 1. What role does this course play within the programme?
- 2. How is the course unique or different from other courses?
- 3. Why should/do students take this course? What essential knowledge or skills should they gain from this experience?
- 4. What knowledge or skills from this course will students need to have mastered to perform well in future classes or jobs?
- 5. Why is this course important for students to take?

The "Course Description" provides general information regarding the topics and content addressed in the course, the "Course Purpose" goes beyond that to describe how this course fits in to the students' educational experience in the programme.

2. EXPECTED LEARNING OUTCOMES

Expected Learning Outcome (definition)

An expected learning outcome is a formal statement of what students are expected to learn in a course. Expected learning outcome statements refer to specific knowledge, practical skills, areas of professional development, attitudes, higher-order thinking skills, etc. that faculty members expect students to develop, learn, or master during a course (Suskie, 2004). Expected learning outcomes are also often referred to as "learning outcomes", "student learning outcomes", or "learning outcome statements".

Simply stated, expected learning outcome statements describe:

- What faculty members want students to know at the end of the course and
- What faculty members want students to be able to do at the end of the course

Learning outcomes have three major characteristics

- They specify an action by the students/learners that is **observable**
- They specify an action by the students/learners that is **measurable**

• They specify an action that is done by the **students/learners** (rather than the faculty members)

Effectively developed expected learning outcome statements should possess all three of these characteristics. When this is done, the expected learning outcomes for a course are designed so that they can be assessed (Suskie, 2004).

3. TO DEFINE EFFECTIVE LEARNING OUTCOME STATEMENTS

When stating expected learning outcomes, it is important to use verbs that describe exactly what the learner(s) will be able to do upon completion of the course.

Examples of good action words to include in expected learning outcome statements:

Compile, identify, create, plan, revise, analyze, design, select, utilize, apply, demonstrate, prepare, use, compute, discuss, explain, predict, assess, compare, rate, critique, outline, or evaluate

There are some verbs that are unclear in the context of an expected learning outcome statement (e.g., know, be aware of, appreciate, learn, understand, comprehend, and become familiar with). These words are often vague, have multiple interpretations, or are simply difficult to observe or measure (American Association of Law Libraries, 2005). As such, it is best to avoid using these terms when creating expected learning outcome statements.

For example, please look at the following learning outcomes statements:

- The students will understand basic Data Mining techniques.
- The students will appreciate knowledge discovery from Data Mining techniques...

Both of these learning outcomes are stated in a manner that will make them difficult to assess. Consider the following:

- How do you observe someone "understanding" a theory or "appreciating" Data Mining techniques?
- How easy will it be to measure "understanding" or "appreciation"?

These expected learning outcomes are more effectively stated the following way:

- The students will be able to identify and describe what techniques are used to extract knowledge from Database Repositories.
- The students will be able to identify the characteristics of Classification techniques from other Data Mining techniques.

Incorporating Critical Thinking Skills into Expected Learning Outcomes Statements

Many faculty members choose to incorporate words that reflect critical or higher-order thinking into their learning outcome statements. Bloom (1956) developed a taxonomy outlining the different types of thinking skills people use in the learning process. Bloom argued that people use different levels of thinking skills to process different types of information and situations. Some of these are basic cognitive skills (such as memorization) while others are complex skills (such as creating new ways to apply information). These skills are often referred to as critical thinking skills or higher-order thinking skills.

Bloom proposed the following taxonomy of thinking skills. All levels of Bloom's taxonomy of thinking skills can be incorporated into expected learning outcome statements. Recently, Anderson and Krathwohl (2001) adapted Bloom's model to include language that is oriented towards the language used in expected learning outcome statements. A summary of Anderson and Krathwohl's revised version of Bloom's taxonomy of critical thinking is provided below.

Definitions of the different levels of thinking skills in Bloom's taxonomy

- **1. Remember** recalling relevant terminology, specific facts, or different procedures related to information and/or course topics. At this level, a student can remember something, but may not really understand it.
- **2. Understand** the ability to grasp the meaning of information (facts, definitions, concepts, etc.) that has been presented.
- **3. Apply** being able to use previously learned information in different situations or in problem solving.
- **4. Analyze** the ability to break information down into its component parts. Analysis also refers to the process of examining information in order to make conclusions regarding cause and effect, interpreting motives, making inferences, or finding evidence to support statements/arguments.
- **5. Evaluate** being able to judge the value of information and/or sources of information based on personal values or opinions.
- **6. Create** the ability to creatively or uniquely apply prior knowledge and/or skills to produce new and original thoughts, ideas, processes, etc. At this level, students are involved in creating their own thoughts and ideas.

List of Action Words Related to Critical Thinking Skills

Here is a list of action words that can be used when creating the expected student learning outcomes related to critical thinking skills in a course. These terms are organized according to the different levels of higher-order thinking skills contained in Anderson and Krathwohl's(2001) revised version of Bloom's taxonomy.

REMEMBER	UNDERSTAND	APPLY	ANALYZE	EVALUATE	CREATE
Choose	Classify	Apply	Analyze	Agree	Adapt
Define	Compare	Build	Assume	Appraise	Build
Find	Contrast	Choose	Categorize	Assess	Change
How	Demonstrate	Construct	Classify	Award	Choose
Label	Explain	Develop	Compare	Choose	Combine
List	Extend	Experiment with	Conclusion	Compare	Compile
Match	Illustrate	Identify	Contrast	Conclude	Compose
Name	Infer	Interview	Discover	Criteria	Construct
Omit	Interpret	Make use of	Dissect	Criticize	Create
Recall	Outline	Model	Distinguish	Decide	Delete
Relate	Relate	Organize	Divide	Deduct	Design
Select	Rephrase	Plan	Examine	Defend	Develop
Show	Show	Select	Function	Determine	Discuss
Spell	Summarize	Solve	Inference	Disprove	Elaborate
Tell	Translate	Utilize	Inspect	Estimate	Estimate
What			List	Evaluate	Formulate
When			Motive	Explain	Happen
Where			Relationships	Importance	Imagine
Which			Simplify	Influence	Improve
Who			Survey	Interpret	Invent
Why			Take part in	Judge	Make up
			Test for	Justify	Maximize
			Theme	Mark	Minimize
				Measure	Modify
				Opinion	Original
				Perceive	Originate
				Prioritize	Plan
				Prove	Predict
				Rate	Propose
				Recommend	Solution
				Rule on	Solve

		Select	Suppose
		Support	Test
		Value	Theory

4. TIPS FOR DEVELOPING COURSE LEVEL EXPECTED LEARNING OUTCOMES STATEMENTS

- Limit the course-level expected learning outcomes to 5 10 statements for the entire course (more detailed outcomes can be developed for individual units, assignments, chapters, etc.).
- Focus on overarching or general knowledge and/or skills (rather than small or trivial details).
- Focus on knowledge and skills that are central to the course topic and/or discipline.
- Create statements that are student-centered rather than faculty-centered (e.g., "upon completion of this course students will be able to list the name of all Communication techniques" versus "one objective of this course is to teach the names of all Communication techniques").
- Focus on the learning that results from the course rather than describing activities or lessons in the course.
- Incorporate or reflect the institutional and departmental missions.

Incorporate various ways for students to show success (outlining, describing, modeling, depicting, etc.) rather than using a single statement such as "at the end of the course, students will know _____" as the stem for each expected outcome statement.

5. SAMPLE EXPECTED LEARNING OUTCOMES STATEMENTS

The following depict some sample expected learning outcome statements from selected courses.

Computer Networks:

After completing this course the student must demonstrate the knowledge and ability to:

- 1. Understand basic computer network technology.
- 2. Understand and explain Data Communications System and its components.
- 3. Enumerate the layers of the OSI model and TCP/IP. Explain the function(s) of each layer.
- 4. Identify the different types of network topologies and protocols.
- 5. Identify the shortest path in a given network.
- 6. Model mathematically various error control schemes.
- 7. Analyze different LLC multiplexing mechanisms, node-to-node flow and error control.
- 8. Analyze different MAC mechanisms (Aloha, Slotted Aloha, TDMA, FDMA) and understand their pros and cons.
- 9. Identify the different types of network devices and their functions within a network.
- 10. Enable to interconnect various heterogeneous networks.
- 11. Understand and building the skills of subnetting and routing mechanisms.
- 12. Design and implement a peer to peer file sharing application utilizing application layer protocols such as HTTP, DNS, and SMTP and transportation layer protocol.
- 13. Predict ethical, legal, security and social issues related to computer networks.

Linux Programming:

After completing this course the student must demonstrate the knowledge and ability to:

- 1. Identify and use Linux utilities to create and manage simple file processing operations, organize directory structures with appropriate security.
- 2. Develop shell scripts to perform more complex tasks.
- 3. Illustrate file processing operations such as standard I/O and formatted I/O.
- 4. Generalize Signal generation and handling signals.
- 5. Develop programs using different Inter Process Communication (IPC) Mechanisms.
- 6. Use multithreading concepts to reduce the wastage of CPU time.
- 7. Design various client server applications using TCP or UDP protocols.

Operating Systems:

After completing this course the student must demonstrate the knowledge and ability to:

- 1. Understand the difference between different types of modern operating systems, virtual machines and their structure of implementation and applications.
- 2. Understand the difference between process & thread, issues of scheduling of user-level processes/ threads and their issues.
- 3. Produce customized algorithmic solutions for given synchronization problems.
- 4. Use modern operating system calls and synchronization libraries in software/ hardware interfaces.
- 5. Identify the rationale behind various memory management techniques along with issues and challenges of main memory, virtual memory and file system.
- 6. Infer the performance of page replacement algorithms in various scenarios.
- 7. Recognize the issues related to file system interface and implementation, disk management.
- 8. Compare and Contrast the time complexities of various disk scheduling algorithms.
- 9. Understand the concepts of deadlock in operating systems and how they can be managed / avoided and implement them in multiprogramming system.

6. AN OVERVIEW OF ASSESSMENT

What is assessment?

According to Palomba and Banta (1999) assessment involves the systematic collection, review, and use of evidence or information related to student learning. Assessment helps faculty understand how well their students understand course topics/lessons. Assessment exercises are often anonymous. This anonymity allows students to respond freely, rather than trying to get the "right" answer or look good. Assessment exercises attempt to gauge students' understanding in order to see what areas need to be re-addressed in order to increase the students' learning.

In other words, assessment is the process of investigating (1) what students are learning and (2) how well they are learning it in relation to the stated expected learning outcomes for the course. This process also involves providing feedback to the students about their learning and providing new learning opportunities/strategies to increase student learning.

For example, Dr. JVR initiates a class discussion on material from Chapter One and determines that most students are confused about Topic X. This class discussion served as a method for assessing student learning and helped determine the fact that student learning related to Topic X is somewhat lacking. Dr. JVR now has the opportunity to (1) inform the students that there is some confusion and (2) make adjustments to address this confusion (e.g., ask student to re-read Chapter One, re-lecture over Topic X, etc.). This assessment process helps increase students' learning.

What is the difference between "evaluation" and "assessment"?

Evaluation focuses on making a judgment about student work to be used in assigning marks that express the level of student performance. Evaluation is usually used in the process of determining marks. Evaluation typically occurs after student learning is assumed to have taken place (e.g., a final exam). Evaluation is part of the assessment process. Course assignments that are evaluated/graded (e.g., exams, papers, tutorials, etc.) are often seen as formal assessment techniques.

While evaluation is an important component of most classrooms, it does have some limitations. For example, if the class average on an exam is a 45%, is seems pretty clear that something went wrong along the way. When one has only evaluated the final learning product, it can be challenging to go back and discover what happened. It can also be difficult to address the situation or provide opportunities for students to learn from their mistakes. Yes, a curve on an exam can help address a low class average, but does it help the students learn? Engaging in informal assessment activities throughout the course can help avoid this situation.

What is involved in the assessment process?

- 1. Establishing expected learning outcomes for the course;
- 2. Systematically gathering, analyzing, and interpreting evidence (through formal assessment activities such as exams or papers and informal assessment activities such as in-class discussions exercises) to determine how well the students' learning matches:
 - Faculty expectations for what students will learn and
 - The stated expected learning outcomes for the course
- 3. Faculty members should use this evidence/assessment of student learning to:
 - Provide questionery to students about their learning (or lack thereof) and
 - Adjust their teaching methods and/or students' learning behaviors to ensure greater student learning (Maki, 2004).

The Best Practice in a Classroom Assessment and is an example of a method that can be used to assess learning outcomes. At the end of a class period or major topic, faculty ask students to anonymously write down what point(s) were the most unclear to them. After class, faculty members review these responses and then re-teach or re-address any confusing topics, thus increasing student learning (Angelo & Cross, 1993).

7. DESCRIPTION OF A COURSE PURPOSE

When planning a course and determining the Learning Outcomes for that course, it is important to examine the course's purpose within the context of the college, and/or the department/program. This process will assist faculty in determining the intent of the course as well as how the course fits into the curriculum. This will help identify the essential knowledge, skills, etc. that should be incorporated into the course and the stated expected learning outcomes for the course. The course purpose section should clarify the level of the course within the programme (e.g., is the course required as a core or an elective and whether it requires any pre-requisites etc.). It should also describe the course's role in the departmental/programmatic curriculum by addressing the intent (importance, main contribution etc.) of the course.

STEP ONE: Determine if the course is part of the IEEE / ACM / AICTE Model Curriculum

The earliest curriculum was published in 1968 for computer science (CS) by the Association for Computing Machinery (ACM), and in 1977 the Computer Society of the Institute for Electrical and Electronic Engineers (IEEE-CS) provided its first curriculum recommendations. In the late 1980's the ACM and the IEEE-CS together formed a task force to create curricula for computer science and computer engineering. The core curriculum covers classes in computer science curriculum, and subsequently separate curricula reports were issued for information systems, software engineering and computer engineering

STEP TWO: Determine how the course fits into the departmental curriculum

Here are some questions to ask to help determine how a course fits in the departmental curriculum: What role does the course play in the departmental/programmatic curriculum?

- Is this course required?
- Is this course an elective?
- Is this course required for some students and an elective for others?
- Does this class have a pre-requisite?
- Is this class a pre-requisite for another class in the department?
- Is this course part of IEEE / AICTE Model Curriculum?

How advanced is this course?

- Is this course an undergraduate or graduate course?
- Where does this course fall in students' degree plan as an introductory course or an advanced course?
- Can I expect the students taking this course to know anything about the course topic?
- Are other faculty members counting on students who have taken this course to have mastered certain knowledge or skills?

When students leave this course, what do they need to know or be able to do?

- Is there specific knowledge that the students will need to know in the future?
- Are there certain practical or professional skills that students will need to apply in the future?
- Five years from now, what do you hope students will remember from this course?

What is it about this course that makes it unique or special?

- Why does the program or department offer this course?
- Why can't this course be "covered" as a sub-section of another course?
- What unique contributions to students' learning experience does this course make?
- What is the value of taking this course? How exactly does it enrich the program or department?

8. PROCEDURE FOR DEVELOPMENT OF EXPECTED LEARNING OUTCOMES FOR A COURSE

The following pages should be of assistance in developing several broad, effectively stated expected learning outcomes for a course. When beginning to construct expected learning outcome statements, it is always good to think about the learners.

Please take a moment to think about the student learners in the course. Please consider the following questions:

- What are the most essential things the students need to know or be able to do at the end of this course?
- What knowledge and skills will they bring with them?
- What knowledge and skills should they learn from the course?

When you begin thinking about the expected learning outcomes for a course, it is a good idea to think broadly. Course-level expected learning outcomes do not need to focus on small details; rather, they address entire classes of theories, skill sets, topics, etc.

The "Course Description" contains the following contents:

- Course Overview
- Prerequisite(s)
- Marks Distribution
- Evaluation Scheme
- Course Objectives
- Course Outcomes
- How Course Outcomes are assessed

- Syllabus
- List of Text Books / References / Websites / Journals / Others
- Course Plan
- Mapping course objectives leading to the achievement of the program outcomes
- Mapping course outcomes leading to the achievement of the program outcomes

9. REFERENCES

- 1. American Association of Law Libraries (2005). Writing learning outcomes. Retrieved May 31, 2005 from http://www.aallnet.org/prodev/outcomes.asp.
- 2. Anderson, L.W., and Krathwohl, D.R. (Eds.) (2001). Taxonomy of learning, teaching, and assessment: A revision of Bloom's taxonomy of educational objectives. New York: Longman.
- 3. Angelo, T.A. & Cross, K.P. (1993). Classroom assessment techniques: A handbook for college teachers (2nd Ed.). San Francisco, CA: Jossey-Bass. Ball State University, (1999).
- 4. Bloom's Classification of Cognitive Skills. Retrieved June 10, 2005 from http://web.bsu.edu/IRAA/AA/WB/chapter2.htm.
- 5. Bloom, B.S., (1956) Taxonomy of educational objectives: The classification of educational goals: Handbook I, cognitive domain. Longmans, Green: New York, NY.
- 6. Hales, L.W. & Marshall, J.C. (2004). Developing effective assessments to improve teaching and learning. Norwood, MA: Christopher-Gordon Publishers, Inc.
- 7. Huba, M.E., (2005). Formulating intended learning outcomes. Retrieved June 16, 2005 Fromhttp://www.viterbo.edu/academic/titleiii/events/files/Jun04/Intended%20Learning%20Outcome s.ppt#256,1,Formulating Intended Learning Outcomes.
- 8. Kansas State University, (2004). Assessment of student learning plan. Retrieved May 15, 2005 from http://www.k-state.edu/assessment/Library/templatew.doc.
- 9. Kansas State University, (2004). Form for identifying strategies and processes for the assessment of student learning outcome(s). Retrieved May 15, 2005 from http://www.k-state.edu/assessment/Library/strategies.pdf.
- 10. Kansas State University, (2005). How to write student learning outcomes: Action verb List suggested verbs to use in each level of thinking skills. Retrieved May 15, 2005 from http://www.k-state.edu/assessment/Learning/action.htm.
- 11. Krumme, G (2001). Major categories in the taxonomy of educational objectives (Bloom 1956). Retrieved June 6, 2005 from http://faculty.washington.edu/krumme/guides/bloom1.html .
- 12. Maki, P.L. (2004). Assessing for learning: Building a sustainable commitment across the institution. Stylus: Sterling, VA.
- 13. Palomba, C.A. & Banta, T.W. Eds. (2001). Assessing student competence in accredited disciplines: Pioneering approaches to assessment in higher education. Stylus: Sterling, VA.
- 14. Siebold, R. & Beal, M. (May 2005). Online course development guide: The workbook. Presented at The Teaching Professor Conference in Shaumburg, IL.
- 15. Suskie, L. (ed) (2001). Assessment to promote deep learning: Insight from AAHE's 2000 and 1999 Assessment Conferences.
- 16. Suskie, L. (2004). Assessing student learning: A common sense guide. Anker Publishing Company: Bolton, MA.
- 17. St. Edward's University Center for Teaching Excellence (2004). Task Oriented Question Construction Wheel Based on Bloom's Taxonomy. Retrieved on May 17, 2005 from http://www.stedwards.edu/cte/resources/bwheel.htm.
- 18. Texas Tech University (2005). Texas Tech University 2005-06 Undergraduate and Graduate Catalog Volume LXXXII. Published by the Office of Official Publications: Lubbock.

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTOR

Course Title	DATABASE MANAGEMENT SYSTEMS							
Course Code	ACS005							
Programme	B.Tech							
Comment	IV	CSE	3					
Semester	III	IT						
Course Type	Core							
Regulation	IARE -	- R16						
	Theory				Practical			
Course Structure	Lectu	ires	Tutorials	Credits	Laboratory	Credits		
	3		1	4	3	2		
Chief Coordinator	Dr. K. Suvarchala, Professor							
Course Faculty	Ms K.	Mayu	ika, Assistant Pro ıri, Assistant prof Shankari, Assista	essor				

I. COURSE OVERVIEW:

This course introduces the core principles and techniques required in the design and implementation of database systems. This introductory application-oriented course covers the relational database systems RDBMS - the predominant system for business, scientific and engineering applications at present. It includes Entity-Relational model, Normalization, Relational model, Relational algebra, and data access queries as well as an introduction to SQL. It also covers essential DBMS concepts such as: Transaction Processing, Concurrency Control and Recovery. It also provides students with theoretical knowledge and practical skills in the use of databases and database management systems in information technology applications.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits		
UG	ACS002	II	Data Structures	4		

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
Database Management Systems	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	>	Quiz	~	Assignments	'	MOOCs
~	LCD / PPT	~	Seminars	~	Mini Project	~	Videos
×	Open Ended Experis	ments					

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component		Total Marks			
Type of Assessment	CIE Exam	Quiz / AAT			
CIA Marks	25	05	30		

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of

five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics,	3	Assignment
	science, engineering fundamentals, and an engineering		/Quiz
	specialization to the solution of complex engineering problems.		
PO 2	Problem analysis : Identify, formulate, review research	2	Seminar
	literature, and analyze complex engineering problems reaching		
	substantiated conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences		
PO 3	Design / development of solutions : Design solutions for	3	Mini Project
	complex engineering problems and design system components		
	or processes that meet the specified needs with appropriate		
	consideration for the public health and safety, and the cultural,		
	societal, and environmental considerations.		
PO 5	Modern tool usage: Create, select, and apply appropriate	3	Laboratory
	techniques, resources, and modern engineering and IT tools		Practices
	including prediction and modeling to complex engineering		
	activities with an understanding of the limitations.		
PO 12	Life-long learning: Recognize the need for, and have the	2	Seminar
	preparation and ability to engage in independent and life-long		
	learning in the broadest context of technological change.		

^{3 =} High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency
			assessed by
PSO 1	Professional Skills: The ability to understand, analyze and develop computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient design of computer-based systems of varying complexity.	2	Seminar
PSO 2	Problem-Solving Skills: The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product for business success.	2	Assignment / Quiz
PSO 3	Successful Career and Entrepreneurship: The ability to employ modern computer languages, environments, and platforms in creating innovative career paths to be an entrepreneur, and a zest for higher studies.	3	Mini Project

^{3 =} High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES (COs):

The course should enable the students to:								
I	Discuss the basic database concepts, applications, data models, schemas and instances.							
II	Design Entity Relationship model for a database.							
III	Demonstrate the use of constraints and relational algebra operations.							
IV	Describe the basics of SQL and construct queries using SQL.							
V	Understand the importance of normalization in databases.							

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code					
ACS005.01	CLO 1	Define the terminology, features, and	PO 1	2	
		characteristics of database system			
ACS005.02	CLO 2	Differentiate database systems from file systems by	PO 1, PO	3	
		enumerating various features provided by database	2		
		systems.			
ACS005.03	CLO 3	Describe Data Models, Schemas, Instances, Three	PO 1	3	
		Schema Architecture and DBMS Component			
		Modules			
ACS005.04	CLO 4	Analyze an information storage problem and derive	PO 2, PO	3	
		an information model expressed in the form of an	3		
		entity relation diagram.			
ACS005.05	CLO 5	Model the real world database systems using Entity	PO 2, PO	2	
		Relationship Diagrams (ERD) from the	3		
		requirements specification.			
ACS005.06	CLO 6	Describe basics of the relational data model.	PO 1	3	
ACS005.07	CLO 7	Define and illustrate the Relational Data Model,	PO 1	3	
100000.07	020 /	Constraints and Schemas	101		
ACS005.08	CLO 8	Transform an information model into a relational	PO 2, PO	2	
		database schema and implement schema using data	3		
		definition language and/or utilities.			
ACS005.09	CLO 9	Formulate solutions to a broad range of query	PO 2, PO	3	
		problems using relational algebra.	3		
ACS005.10	CLO 10	Apply relational calculus to solve broad range of	PO 2, PO	3	
		query problems.	3,		
ACS005.11	CLO 11	Illustrate the Functional Dependencies, Inference	PO 1, PO	2	
		Rules, Minimal Sets of FDs	2		
ACS005.12	CLO 12	Understand normalization theory and criticize a	PO 2, PO	2	
		database design and improve the design by	3		
		normalization.			
ACS005.13	CLO 13	Explain various Normal Forms and Apply to	PO 1, PO	3	
		normalize a database.	2		
<u> </u>	•	•			

ACS005.14	CLO 14	Understand the SQL Data definition statements to	PO 1,PO	2
		formulate solutions to a broad range of query and	2, PO 5	
		data update problems		
ACS005.15	CLO 15	Use an SQL interface of a multi-user relational	PO 2, PO	3
		DBMS package to create, secure, populate,	5	
		maintain, and query a database.		
ACS005.16	CLO 16	Use SQL queries for data aggregation,	PO 2, PO	2
		calculations, views, sub-queries, embedded queries,	5	
		manipulation, and report generation.		
ACS005.17	CLO 17	Demonstrate PL/SQL including stored procedures,	PO 2, PO	3
		stored functions, cursors, packages.	3, PO 5,	
		1	PO 12	
ACS005.18	CLO 18	Gain knowledge on transaction processing to	PO 1, PO	2
		maintain consistency and integrity of data in	2	
		database systems.		
ACS005.19	CLO 19	Describe concurrency control techniques to	PO 1,PO 2	2
		implement data integrity in database systems.		
ACS005.20	CLO 20	Illustrate various backup and recovery techniques	PO 1,PO 2	2
		for database systems		
ACS005.21	CLO 21	Analyze transaction processing, concurrency	PO 1, PO	3
		control, Database recovery techniques	2	
ACS005.22	CLO 22	Define disk storage devices, files of records,	PO 1	3
		unordered files, ordered files and hashed files and		
		organizations		
ACS005.23	CLO 23	Familiar with basic database storage structures and	PO 1, PO	2
		access techniques- file and page organizations,	2	
		indexing methods		
ACS005.24	CLO 24	Illustrate various operations in implementing data	PO 1, PO	3
		indices using various hashing techniques.	2, PO 5	
ACS005.25	CLO 25	Possess the knowledge and skills for employability	PO 5, PO	3
		and to succeed in national and international level	12	
		competitive examinations.		

3 = High; 2 = Medium; 1 = Low

X MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

(CI O)	Program Outcomes (POs)												Program Specific Outcomes (PSOs)		
(CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		PSO2	DCO
CLO 1	3												1		
CLO 2	3	2													
CLO 3	3												2		
CLO 4		3	3												
CLO 5		3	3											2	1
CLO 6	3														
CLO 7	3													2	
CLO 8		2	3											2	
CLO 9		3	2											3	
CLO 10		3	2											3	
CLO 11	3	2													
CLO 12		3	2											2	
CLO 13	3	3											2		
CLO 14	3	2											2		
CLO 15		2			3										3
CLO 16		2			3									2	
CLO 17		2	3		3							3			3
CLO 18	3	2											2		
CLO 19	3	2												2	
CLO 20	3	2												2	
CLO 21	3	2											3		
CLO 22	3												3		
CLO 23	3	2												2	
CLO 24	2	3			3										
CLO 25					3							2			3

^{3 =} High; 2 = Medium; 1 = Low

XI ASSESSMENT METHODOLOGIES - DIRECT

CIE Exams	PO 1, PO 2, PO 3, PO 5	SEE Exams	PO 1, PO 2, PO 3, PO 5	Assignments	PO 1	Seminars	PO 2
Laboratory Practices	PO 2	Student Viva	PO 3	Mini Project	PO 3	Certification	-
Term Paper	-						

XII ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

Unit-I	CONCEPTUAL MODELING					
	Introduction to file and database systems: Database system structure, data models, introduction to network and hierarchical models, ER model, relational model.					
Unit-II	RELATIONAL APPROACH					

Relational algebra and calculus: Relational algebra, selection and projection, set operations, renaming, joins, division, examples of algebra queries, relational calculus, tuple relational calculus, domain relational calculus, expressive power of algebra and calculus

Unit-III BASIC SQL QUERY

SQL data definition; Queries in SQL: updates, views, integrity and security, relational database design. Functional dependencies and normalization for relational databases up to five normal forms.

Unit-IV TRANSACTION MANAGEMENT

Transaction processing: Introduction, need for concurrency control, desirable properties of transaction, schedule and recoverability, serializability and schedules, concurrency control; Types of locks: Two phases locking, deadlock, time stamp based concurrency control, recovery techniques, concepts, immediate update, deferred update, shadow paging.

Unit-V DATA STORAGE AND QUERY PROCESSING

Record storage and primary file organization, secondary storage devices, operations on files, heap File, sorted files, hashing techniques, and index structures for files; Different types of indexes, B tree, B+ tree, query processing.

Text Books:

- Abraham Silberschatz, Henry F. Korth, S. Sudarshan, "Database System Concepts", McGraw-Hill, 4th Edition, 2002.
- Ramez Elmasri, Shamkant B. Navathe, "Fundamental Database Systems", Pearson Education, 3rd Edition, 2003

Reference Books:

- Raghu Ramakrishnan, "Database Management System", Tata McGraw-Hill Publishing Company, 3rd Edition, 2003.
- 2. Hector Garcia Molina, Jeffrey D. Ullman, Jennifer Widom, "Database System Implementation", PearsonEducation, United States 1st Edition, 2000.
- 3. Peter Rob, Corlos Coronel, "Database System, Design, Implementation and Management", Thompson Learning Course Technology, 5th Edition, 2003.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	CLOs	Reference
1-2	Introduction, Data base System Applications, Purpose of data base Systems, View of Data – Data Abstraction, Instances and Schemas Data Models,, Database Languages, Data base access for applications Programs	CLO 1	T2: 1.1- 1.5
3-4	Transaction Management component of DB architecture, Data base users, History of database systems, Database design, ER Diagrams.	CLO 2	T2: 1. 6 - 1.8,, 1.10,T1: 2.1
5-6	Entities, Attributes and entity sets, Relationships and relationship sets, Additional features of ER model, Conceptual design with ER model, Conceptual design for large enterprises	CLO 3, CLO4, CLO5	T1: 2.2-2.6
7-8	Relational Model: Introduction to the Relational Model – Integrity Constraint Over relations, Enforcing Integrity constraints – Querying relational data	CLO 6, CLO 7, CLO 8	T1: 3.1-3.7
9-10	Relational Algebra and Calculus: Relational Algebra – Selection and projection –set operations – renaming, Joins – Division	CLO 8, CLO 9	T1: 4.1, 4.2.2
11-12	Relational calculus – Tuple relational Calculus – Domain relational calculus – Expressive Power of Algebra and calculus.	CLO 10	T1:4.3, 4.4
13-14	Form of Basic SQL Query – Examples of Basic SQL Queries Comparison Operators – Aggregative Operators, NULL values, Logical connectivity's – AND, OR and NOT,,mplex Integrity Constraints in SQL	CLO 14, CLO 15	T1: 5.2-5.5
15-16	Introduction to Nested Queries – Correlated Nested Queries Set Comparison Operators – Aggregative Operators, Triggers and Active Data bases	CLO 16, CLO 17	T1: 5.6- 5.8
17-18	Introduction to Schema refinement – Problems Caused by redundancy ,Decompositions – Problem related to decomposition	CLO 11	T1: 19.1, 19.1.3
19-21	Functional dependencies, reasoning about FDS ,Lossless join Decomposition , Dependency preserving Decomposition	CLO 12	T2: 19.4- 19.8
22-25	Schema refinement in Data base Design, Normal Forms, MVDs, JDs	CLO 13, CLO 14	T2: 19.8- 199
26-29	Transaction Management: Transaction Concept-Transaction State-Implementation of atomicity and Durability, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for Serializability.	CLO 18	T2: 15.1- 15.29
30-33	Concurrency Control: Lock-Based Protocols –time Stamp Based protocols-,Validation Based Protocols-Multiple Granularity	CLO 19	T2: 16.1, 16.2 T2: 16.3, 16.4
34-37	Recovery System-Failure Classification-storage Structure recovery and Atomicity-Log Based Recovery-,Recovery with, Concurrent Transactions, Buffer Management-Failure with loss of Non Volatile Storage, Advance Recovery Systems-Remote Backup Systems	CLO 20, CLO 21	T2: 17.1 - 17.10

38-39	Overview of Storage and Indexing: Data on External Storage, File Organization and Indexing – Cluster Indexes, Primary and Secondary Indices	CLO 22	T1: 8.1,8.2
40-41	Index data Structures – Hash Based Indexing ,Tree base Indexing – Comparison of File Organizations	CLO 24	T1: 8.3- 8.4
Lecture	Topics to be covered	CLOs	Reference
No		0205	1101010110
42	Tree Structured Indexing: Intuitions for tree Indexes Indexed Sequential Access Methods (ISAM)	CLO 22	T1: 10 10.2
43	B+ Trees: A Dynamic Index Structure-Search, insert, Delete operations	CLO 22	T1: 10.3 - 10.6
44	Hash Based Indexing: Static Hashing – Extendable hashing ,Linear Hashing –Extendable vs. Liner hashing	CLO 24	T1: 11.1 – 11.4
45	Query Processing	CLO 24	T1:12.1- 12.3

X V. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed Action	Relevance with POs	Relevance with PSOs
1	Conversion of ER model into	Seminars	PO 2, PO 12	PSO 1
	Relational Model	/Guest		
		Lecture		
2	Practical Implementation of triggers	Assignments/	PO 3, PO 5, PO	PSO 2
	and assertions using PL/SQL	Lab	12	
		experiments		
3	Implementation of Transaction and	Assignments/	PO 2, PO 5, PO	PSO 2
	security restriction using SQL.	Lab	12	
		experiments		

Prepared by:

Dr. K. Suvarchala, Professor

HOD, CSE